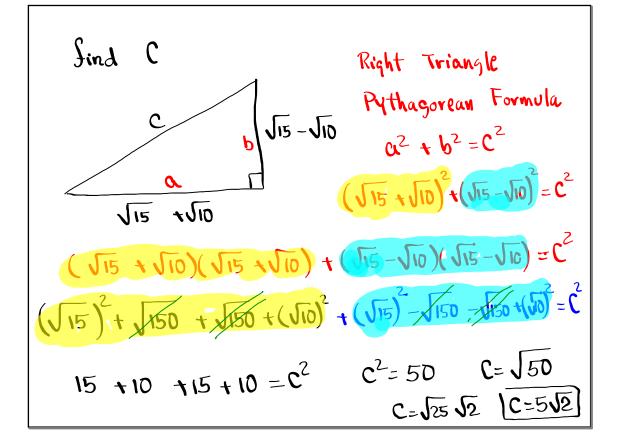

T



Find the area and the perimeter of the shape
below Rectangle

$$(\sqrt{10} \pm \sqrt{2})^{m}$$
 $A = LW \Rightarrow m^{2}$
 $(\sqrt{10} \pm \sqrt{2})^{m}$ $P = 2L + 2W \Rightarrow m$
 $A = LW = (\sqrt{10} \pm \sqrt{2})(\sqrt{10} - \sqrt{2}) = \sqrt{100} - \sqrt{20} \pm \sqrt{20} - \sqrt{4}$
 $= 10 - 2 = 8m^{2}$
 $P = 2L + 2W = 2(\sqrt{10} \pm \sqrt{2}) \pm 2(\sqrt{10} - \sqrt{2})$
 $= 2\sqrt{10} \pm 2\sqrt{2} \pm 2\sqrt{10} - 2\sqrt{2} = \sqrt{10} m$

Sind the area and the perimeter of the shape below
<u>(3)2-15)in.</u> Square
$\begin{array}{c} A = S^2 \qquad P = 4S \\ in^2 \qquad in. \end{array}$
$A = S^2 = (3\sqrt{2} - \sqrt{5})^2$
$=(3\sqrt{2}-\sqrt{5})(3\sqrt{2}-\sqrt{5})$
$P=4S$ = $9\sqrt{4} - 3\sqrt{10} - 3\sqrt{10} + \sqrt{25}$
$=4(3\sqrt{2}-\sqrt{5})$ $=9\cdot2-6\sqrt{10}(\pm5)$
$= 12\sqrt{2} - 4\sqrt{5}$ in. $= 23 - 6\sqrt{10}$ in ²

Solve

$$\sqrt{2x-7} + 3 = 6$$
 Isolate the radical
 $\sqrt{2x-7} = 6-3$
 $\sqrt{2x-7} = 3$
Raise both Sides to the
index Power. Index=2
 $(\sqrt{2x}-7)^2 = 3^2$
 $2x-7 = 9$ $2x = 16$
Check
 $\sqrt{2x-7} + 3 = 6$
 $\sqrt{2x-7}$

Solve & check

$$x = \sqrt{3x + 10} = 0$$

 $x = \sqrt{3x + 10}$
 $x^2 = (\sqrt{3x + 10})^2$
 $x^2 = 3x + 10$
 $x^2 = 3x + 10$
 $x^2 = 3x - 10 = 0$
 $x^2 = 3x - 10 = 0$
 $x = -5 = 0$

Eiven
$$-2 - 5i$$

1) Re. = -2 2) Im.= -5 3) Complex Conjugate
 $-2 + 5i$
Simplify and write in $a + bi$ Sorm.
 $\sqrt{50} - \sqrt{-49}$
 $\sqrt{50} - \sqrt{-16}$
 $\sqrt{-16} - \sqrt{-16}$

Simplify
$$(-2 + 3i)(4 - 5i)$$

Use
FOIL $= -8 + 10i + 12i - 15i$ $(-4 + bi)$
Method $= -8 + 22i - 15(-1)$
 $= -8 + 22i + 15$
 $= [1 + 22i]$ Re. $= 7$, Im. $= 22$
Complex Conjugate
 $T - 22i$

Simplify
$$(3 - 4i)^{2}$$

= $(3 - 4i)(3 - 4i)$
= $(3 - 4i)(3 - 4i)$
= $9 - 12i - 12i + 16i^{2}$
= $9 - 24i + 16(-1)$ $0 + 5i$
= $9 - 24i - 16 = [-7 - 24i]$
Re.=-7, Im.=-24
Complex Conjugate
-7 + 24i

Divide
$$\frac{5}{1-2i} = \frac{5(1+2i)}{(1-2i)(1+2i)}$$

= $\frac{5+10i}{1+2i-2i-4i^2}$
= $\frac{5+10i}{1-4(-1)} = \frac{5+10i}{1+4}$
[1+2i] = $\frac{5+10i}{5}$
Re.=1 $I_{vn=2}$ = $\frac{5+10i}{5}$

Divide
$$\frac{1+i}{2+3i} = \frac{(1+i)(2-3i)}{(2+3i)(2-3i)}$$

 $= \frac{2-3i+2i-3i^2}{4-6i+6i-9i^2}$
 $Re = \frac{5}{13}$ $= \frac{2-i-3(-1)}{4-9(-1)} = \frac{2-i+3}{4+9}$
 $Im. = \frac{-1}{13}$ $= \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i$

Powers of *i*:

$$(-1)^{odd} = -1$$

Simplify $i^{250} = (i^{2})^{25} = (-1)^{125} = [-1]$
Simplify $i^{23} = i^{122} \cdot i = (i^{2})^{12} \cdot i = (-1)^{12} \cdot i$
 $(-1)^{odd} = -1 = (-1)^{122} \cdot i = (-1)^{12} \cdot i = (-1)^{12} \cdot i$

Removing the radicals from numerator
or denominator is called rationalizing.
Rationalize the deno.:
$$\frac{10}{\sqrt{2}} = \frac{10}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$$

 $= \frac{10\sqrt{2}}{\sqrt{4}} = \frac{10\sqrt{2}}{\sqrt{2}}$
Rationalize the deno. $\frac{2}{\sqrt{3x}}$
 $\frac{2}{\sqrt{3x}} = \frac{2}{\sqrt{3x}} \cdot \frac{\sqrt{3x}}{\sqrt{3x}} = \frac{2\sqrt{3x}}{\sqrt{3x}} = \frac{\sqrt{3x}}{3} = \frac{32}{3}$
Rotionalize the deno.: $\frac{-2x}{\sqrt{4x}} = \frac{-2x}{\sqrt{32x}} \cdot \frac{\sqrt{32x}}{\sqrt{2x^2}}$
Rotionalize the deno.: $\frac{-2x}{\sqrt{4x}} = \frac{-2x}{\sqrt{32x}} \cdot \frac{\sqrt{32x^2}}{\sqrt{2x^2}}$
 $= \frac{-2x\sqrt{32x^2}}{\sqrt{3x^3}} = \frac{-2x\sqrt{32x^2}}{\sqrt{2x^2}}$
 $= \frac{-\sqrt{32x^2}}{\sqrt{2x^2}} = \frac{-2x\sqrt{32x^2}}{\sqrt{2x^2}}$
 $= -\frac{\sqrt{32x^2}}{\sqrt{2x^2}} = \frac{-\sqrt{32x^2}}{\sqrt{2x^2}}$

Rationalize the deno:

$$\frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$$

$$= \frac{\sqrt{4}+\sqrt{2}}{\sqrt{4}+\sqrt{2}-\sqrt{2}-1} = \frac{2+\sqrt{2}}{2-1} = \frac{2+\sqrt{2}}{1}$$

$$= \frac{2+\sqrt{2}}{\sqrt{4}+\sqrt{2}-\sqrt{2}-1} = \frac{2+\sqrt{2}}{2-1} = \frac{2+\sqrt{2}}{1}$$

Rationalize the deno.:

$$\frac{17}{10 + \sqrt{3}} = \frac{7}{(\sqrt{10} - \sqrt{3})} (\sqrt{10} - \sqrt{3}) (\sqrt{10} - \sqrt{3})$$

$$= \frac{7\sqrt{10} - 7\sqrt{3}}{\sqrt{100} - \sqrt{30} + \sqrt{30} - \sqrt{9}}$$

$$= \frac{7\sqrt{10} - 7\sqrt{3}}{10 - 3} = \frac{7\sqrt{10} - 7\sqrt{3}}{7}$$

$$= \frac{7\sqrt{10} - 7\sqrt{3}}{10 - 3} = \frac{7\sqrt{10} - 7\sqrt{3}}{7}$$

$$= \frac{7\sqrt{10} - 7\sqrt{3}}{7} = \frac{7\sqrt{10} - 7\sqrt{3}}{7}$$

Rationalize the deno:
$$\sqrt{6}$$

 $3\sqrt{3} - \sqrt{2}$
 $\sqrt{6}$ ($2\sqrt{3} + \sqrt{2}$) = $\frac{2\sqrt{18} + \sqrt{12}}{4\sqrt{9} + 2\sqrt{6} - 2\sqrt{6} - \sqrt{4}}$
 $(2\sqrt{3} - \sqrt{2})(2\sqrt{3} + \sqrt{2}) = \frac{2\sqrt{9}\sqrt{2} + \sqrt{9}\sqrt{3}}{4\sqrt{3} - 2}$
 $= \frac{6\sqrt{2} - 2\sqrt{3}}{10}$
 $= \frac{2(3\sqrt{2} - \sqrt{3})}{5}$
 $= \frac{3\sqrt{2} - \sqrt{3}}{5}$

Solve
$$\xi$$
 check
 $\sqrt{2+10} = \sqrt{3} + 4$
 $\sqrt{2+10} = 2 + 4$
 $\sqrt{2+10} = 2 + 4$
 $\sqrt{2+10} = (x+4)^2$
 $x+10 = (x+4)(x+4)$
 $x+10 = x^2 + 8x + 16$
 $2+10 = x^2 + 8x + 16$
 $2+10 = x^2 + 8x + 16$
 $2+10 = x^2 + 8x + 16$
 $2^2 \sqrt{8x} + 16 - x - 10 = 0$
 $\sqrt{2} + 10 - 4 = x$
 $\sqrt{2} + 10 - 4 = -6$
 $x^2 + 7x + 6 = 0$
 $\sqrt{4} - 4 = -6$
 $2 - 4 = -6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 4 = -6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 4 = -6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 4 = -6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 6$
 $x + 6 = 0$
 $x + 1 = 0$
 $2 - 6$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = 0$
 $x + 6 = 0$
 $x + 1 = -1$
 $\sqrt{1 + 10} - 4 = -1$
 $\sqrt{1 + 10} - 4 = -1$

Solve
$$\xi$$
 Check
 $\sqrt{2+7} + 5 = 2$
 $\sqrt{2+7} = 2 - 5$
 $(\sqrt{2+7})^2 = (2-5)^2$
 $2^2 - 11x + 18 = 0$
 $(x-9)(x-2) = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $2 - 9 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 $3 - 2 - 2 = 0$
 3

Solve
$$\dot{\epsilon}$$
 check
 $\sqrt[3]{(x+1)^2}$ $(-4)=0$ $\sqrt[3]{(x+1)^2} = 4$
 $x+9=0$ $x-7=0$ $\int 1ndex = 3$
 $x=-9\sqrt{x=7\sqrt{x}}$ $(\sqrt[3]{(x+1)^2})^3 = (4)^3$
($\sqrt[3]{(x+1)^2})^3 = (4)^3$
($\sqrt[3]{(x+1)^2})^3 = 64$
 $\sqrt[3]{(x+1)^2} = 64$

Class QZ 15:
1) Write in Atbi Form :
$$\sqrt{18} - \sqrt{-100}$$

2) Simplify: $-2i(5+i)+5(3+2i)$
3) Simplify: $(3+4i)^2$
4) Divide: $\frac{13}{2-3i}$